Simple procedure for finding Miller indices of a plane:

- Establish the coordinate axes along the edges of the unit cell
- Note where the plane intersects the axes.
- Divide each intercept by the unit cell length in along the respective coordinate axis.
- Record the normalized intercepts in x, y, z order.
- Compute the reciprocal of each intercept.
- Multiply the intercepts by the smallest overall constants that yield whole numbers. (See figure 33).

Representation of a plane and a family of equivalent planes:
A certain plane with Miller indices h, k, ℓ is represented by parentheses as (h, k, ℓ).[e.g. the planes (100), ($\overline{1} 00$), (110), (111), ($2 \overline{2} 1$) and (222)]. (See figure 34)
[Note: A bar is placed over the number to indicate the negative intercept].

For a cubic lattice we may have a set of planes which are equivalent to each other; e.g. (001), (010), (100), (00 $\overline{1}),(0 \overline{1} 0)$ and
($\overline{1} 00$), as shown in figure 35. This six equivalent faces of a cube are collectively designated as $\{100\}$ where any of the individual set of these six indices will be the representative to the whole set if this set of indices is enclosed in braces $\}$.

x

Figure 34:
a) The Miller indices ($h k l$) for this plane ($2 \overline{2} 1$)
b) The Miller indices ($h k /$) for this plane (100)

Simple procedure for finding Miller indices of a vector (or a direction):

- Establish the coordinate axes along the edges of the unit cell.
- Draw a vector in the direction of interest.
- Decompose the vector into components by projecting it onto the coordinate axes.
- Record the components in x, y, z order.
- Multiply the components by the smallest overall constant that yields whole numbers.
- Miller indices of a vector are enclosed in brackets [].
- A plane has the same Miller indices as its normal vector.
- A family of equivalent vectors is enclosed in angle brackets < >.

Again for a cubic lattice we may have a set of vectors which are equivalent to each other, e.g. [001], [010], [100], [00 $\overline{1}],[0 \overline{1} 0]$ and [$\overline{1} 00$]. This six equivalent vectors perpendicular to the faces of a cube are collectively designated as <100> where any of the individual set of these six indices will the representative to the whole set if this set of indices is enclosed in braces < >.

Notes:

1) In cubic lattices a direction [hk k] is perpendicular to the plane ($h k \ell$). This is convenient in analyzing lattices with cubic unit cells, but it should be remembered that it is not necessarily true in the case of non-cubic systems.
2) In most cases, directions and planes are indexed in terms of conventional rather than primitive lattice vectors.

The angle between two crystallographic directions for a cubic lattice:

When two crystallographic directions denoted by [$h_{1} k_{1} \ell_{1}$] and [h_{2} $k_{2} \ell_{2}$] or a plane ($h_{1} k_{1} \ell_{1}$) and another plane ($h_{2} k_{2} \ell_{2}$), the angle between them can be obtained from the relation:

$$
\cos \theta=\frac{h_{1} h_{2}+k_{1} k_{2}+\ell_{1} \ell_{2}}{\left(h_{1}^{2}+k_{1}^{2}+\ell_{1}^{2}\right)^{1 / 2}\left(h_{2}^{2}+k_{2}^{2}+\ell_{2}^{2}\right)^{1 / 2}}(\text { prove it? })
$$

Figure 35: A family of lattice planes in a simple cubic lattice
a) The faces with Miller indices (001), (010) and (0 $\overline{1} 0$)
b) The faces with Miller indices ($\overline{1} 00$) and ($00 \overline{1}$)

Important Note: Different crystal planes have different atomic structures which lead to different chemical and electrical properties of these surfaces.

Examples: Cubic lattice

$$
\begin{aligned}
& \text { Intercepts } \rightarrow 1 \infty \infty \\
& \text { Plane } \rightarrow(100) \\
& \text { Family } \rightarrow\{100\} \rightarrow 6
\end{aligned}
$$

Intercepts $\rightarrow 11 \infty$
Plane \rightarrow (110)
Family $\rightarrow\{110\} \rightarrow 6$

What about planes passing through fractional lattice spacings?

$$
\begin{aligned}
& \text { Intercepts } \rightarrow \infty \text { t/2 } \infty \\
& \text { Plane } \rightarrow\left(\begin{array}{lll}
0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

Note: Actually (020) plane has half the spacing as (010) planes

Linear and Planar density

- Linear Density
- Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.

Linear - Density $=\frac{\text { Number }- \text { of }- \text { atoms }- \text { centered }- \text { on }- \text { adirectional }- \text { vector }}{\text { Length }- \text { of }- \text { directional }- \text { vector }}$

- Planar Density
- Number of atoms per unit area that are centered on a particular crystallographic plane.

Planar - Density $=\frac{\text { Number }- \text { of }- \text { atoms }- \text { centered }- \text { on }- \text { aplane }}{\text { Area }- \text { of }- \text { the }- \text { plane }}$
Why do we care about linear and planar densities?

- Properties, in general, depend on linear and planar density.
- Examples:

1. Electrical conductivity depends on planar density
2. Speed of sound along directions

- Slip (deformation in metals) depends on linear and planar density
- Slip occurs on planes that have the greatest density of atoms in direction with highest density

